Análisis del desempeño en un enlace descendente de redes basadas en los estándares IEEE 802.11b, IEEE 802.11n y WDS. / Performance analysis of downlink networks based on standards IEEE 802.11b, IEEE 802.11n and WDS / Performance analysis of down-link

  • Román Alcides Lara Cueva Universidad de las Fuerzas Armadas - ESPE
  • Claudia Betzabeth Fernández Jiménez Universidad de las Fuerzas Armadas - ESPE
  • Carlos Andrés Morales Maldonado Universidad de las Fuerzas Armadas - ESPE
Palabras clave: fluctuación de retardo, paquetes perdidos, retardo, rendimiento normalizado.

Resumen

En este artículo se analiza el desempeño del enlace descendente de redes basadas en los estándares IEEE 802.11b, IEEE 802.11n y WDS (Wireless Distributed Systems) al interior de un edifico. Para ello se plantean tres escenarios considerando fija la ubicación del transmisor en el primer piso y que el receptor varía su ubicación a las distancias de 3.6m, 7.2m y 10.8m desde el transmisor, existiendo un obstáculo entre cada distancia. En la obtención de resultados se emplea la técnica intrusiva de inyección de tráfico teniendo como principales métricas de desempeño al throughput normalizado, delay, packetloss y jitter. Los mejores resultados considerando el throughput normalizado como medida de eficiencia se obtuvieron con la red basada en el estándar IEEE 802.11n en el primer escenario con 78 %, mientras que en el segundo escenario WDS presenta una eficiencia de 52 %, finalmente en el tercer escenario con IEEE 802.11b se obtiene una eficiencia de 17 %.

Citas

Aman, M., & Sikdar, B. (2012). A CART based mechanism for collision detection in IEEE 802.11. IEEE Latin-America Conference on Communications (LATINCOM), 2012, 1-6.

Avallone, S., Guadagno, S., Emma, D., & Ventre, G. (Sept. 2004). D-ITG distributed Internet traffic generator. Proceedings of the First International Conference on the Quantitative Evaluation of Systems QEST 2004, 316-317.

Belghith, A., Tagar, R., & Braham, R. (2009). Enhancing QoS parameters using an IEEE 802.11 multi-interface based wireless distribution system (MI-WDS). Global Information Infrastructure Symposium, 2009. GIIS'09, 1-4.

Botta, A., Dainotti, A., & Pescapé, A. (2012). A tool for the generation of realistic network workload for emerging networking scenarios. Computer Networks, 3531-3547.

Chen, J., Chan, S., & Liew, S. (2003). Mixed-mode WLAN: the integration of ad hoc mode with wireless LAN infrastructure. IEEE Global Telecommunications Conference, 2003. GLOBECOM'03, 231-235.

Elson, J., & Römer, K. (2003). Wireless sensor networks: A new regime for time synchronization. ACM SIGCOMM Computer Communication Review, 149-154.

Gurewitz, O., Cidon, I., & Sidi, M. (2006). One-way delay estimation using network-wide measurements. IEEE/ACM Transactions on Networking (TON), 2710-2724.

Hiertz, G. R., Denteneer, D., Stibor, P. L., Zang, Y., Costa, X. P., & Walke, B. (2010). The IEEE 802.11 universe. IEEE Communications Magazine, 62-70.

Jiang, D., & Delgrossi, L. (2008). IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. IEEE Vehicular Technology Conference, 2008. VTC Spring 2008, 2036-2040.

Lara-Cueva, R., Benítez, D., Caamano, A., Zennaro, M., & Rojo-Alvarez, J. L. (2014). Performance evaluation of a volcano monitoring system using wireless sensor networks. IEEE Latin-America Conference on Communications (LATINCOM), 2014, 1-6.

Lara-Cueva, R., Benítez, D., Fernández, C., & Morales, C. (2015). Performance Analysis of Wireless Network Modes in Conformance with IEEE 802.11b and WDS. Asia-Pacific Conference on Computer Aided System Engineering (APCASE), 2015, 370-373.

Mills, D. L. (1991). Internet time synchronization: the network time protocol. IEEE Transactions on Communications, 1482-1493.

Pearson, C. (2001). Peer-to-peer file sharing system and method using user datagram protocol. U.S. Patent Application, No. 09/921,731.

Sendra, S., Fernandez, P., Turro, C., & Lloret, J. (2010). IEEE 802.11 a/b/g/n Indoor Coverage and Performance Comparison. IEEE International Conference on Wireless and Mobile Communications (ICWMC), 2010 6th., 185-190.

Sendra, S., García Pineda, M., Turró Ribalta, C., & Lloret, J. (2011). WLAN IEEE 802.11 a/b/g/n Indoor Coverage and Interference Performance Study. International Journal on Advances in Networks and Services, 209-222.

Sendra, S., Lloret, J., Turro, C., & Aguiar, J. (2014). IEEE 802.11 a/b/g/n short-scale indoor wireless sensor placement. International Journal of Ad Hoc and Ubiquitous Computing, 68-82.

Srivastava, S., Anmulwar, S., Sapkal, A., Batra, T., Gupta, A. K., & Kumar, V. (2014). Comparative study of various traffic generator tools. Recent Advances in Engineering and Computational Sciences (RAECS), 2014 , 1-6.

Tahar, R., Belghith, A., & Braham, R. (2009). Performance evaluation of IEEE 802.11 multi-interface based wireless distribution system (MI-WDS). IEEE International Conference on Computer Systems and Applications, 2009. AICCSA 2009, 1-4.

Zaggoulos, G., & Nix, A. (2008). WLAN/WDS performance using directive antennas in highly mobile scenarios: Experimental results. International Wireless Communications and Mobile Computing Conference, 2008. IWCMC'08, 700-705.

Publicado
2016-04-28
Cómo citar
Lara Cueva, R. A., Fernández JiménezC. B., & Morales Maldonado, C. A. (2016). Análisis del desempeño en un enlace descendente de redes basadas en los estándares IEEE 802.11b, IEEE 802.11n y WDS. / Performance analysis of downlink networks based on standards IEEE 802.11b, IEEE 802.11n and WDS / Performance analysis of down-link. RECI Revista Iberoamericana De Las Ciencias Computacionales E Informática, 5(10), 1 -19. Recuperado a partir de https://mail.reci.org.mx/index.php/reci/article/view/42
Sección
Artículos Cientificos