The sampling design effect on partial least squares algorithm / El efecto de diseño de muestreo en el algoritmo de mínimos cuadrados parciales

  • Hugo Serrato González Universidad Iberoamericana
  • Ignacio Méndez Ramírez IIMAS-Universidad Nacional Autónoma deMéxico
  • Odette Lobato Calleros Universidad Iberoamericana

Abstract

The objective of this article is to analyze the effect of the probability sampling’s selection on the estimated results in Structural Equation Modeling (SEM) using the Partial Least Squares (PLS) algorithm.The idea leading this work is to estimate the satisfaction level of government service users in a large and dispersed population, for which a sample design with an equal selection probability is not a feasible option. This study is based on the analysis of the sampling distributions of estimators under different sampling designs.It is shown that the probability of selection of the units behind the sampling design affect the results of the PLS algorithm, both the scores of latent variables and the impacts between them.To the author's knowledge, this issue has not been addressed before in the literature.

References

American Customer Satisfaction Index (2005), American Customer Satisfaction Index. Methodology Report, Michigan Ross School of Business/American Society for Quality/CFI Group, Ann Arbor, MI.

Chatelin Y.M., V.E. Vinzi, and M Tenenhaus (2002) “State-of-art on PLS path modeling Through the available software�, Mimeo

Chin, W. W., and Newsted, P. R. (1999). “Structural equation modelling analysis with small samples using partial least squares�. In R. H. Hoyle (Eds.), Statistical strategies for small sample research. Thousand Oaks, CA: Sage. pp.307–341.

Djkstra, T.K. (2009), Latent variables and indices: “Herman Wold´s basic design and partial least squares�, In: Esposito, V., Chin, W., Henseler, J., and Wang, H. (Ed), Handbook of partial least squares, Springer, Heidelberg. pp. 23-46.

Fornell, C. and Bookstein, F.L. (1982), “Two structural equation models: LISREL and PLS applied to consumer exit-voice theory�, Journal of Marketing Research, (19:4), pp. 440-452.

Haenlein, M. and Kaplan A.M. (2004), “A beginner´s guide to Partial Least Squares Analysis�, Understanding Statistics, (3:4), pp. 283-297.

Henseler, J., Ringle, C.M. and Sinkovics, R.R. (2009), “The use of Partial Least Squares Path Modeling in International Marketing�, Advances in International Marketing, (20), pp. 277-319.

Horvitz, D. G.; Thompson, D. J. (1952) "A generalization of sampling without replacement from a finite universe", Journal of the American Statistical Association, 47, 663–685,

Hsu, S.H., Chen, W.H., and Hsieh, M.J. (2006), “Robustness testing of PLS, LISREL, EQS and ANN-based SEM for measuring customer satisfaction�, Total Quality Management, (17:3), pp. 55–371.

Lobato O., Rivera H., Serrato H., Gómez M., León C., and Cervantes, P. (2011), “Reporte Final del IMSU-Programas Sociales Mexicanos. Programa de Abasto Social de Leche Liconsa – Modalidad de leche líquida�, available at: http://www.2006-2012.sedesol.gob.mx/es/SEDESOL/Evaluacion_de_la_Satisfaccion_de_los_Beneficiarios_. (Active link)

Magee, Lonnie (2005), “Improving Survey Sampling-Weighted Least Squeres Regression� Journal of The Royal Statistical Society, Series B (Statistical Mehodology) (60:1), pp. 115-126.

Morgeson III, F. V. (2011), “How much is enough?� Sample size, Sampling and the CFI Group Method. CFI Group internal document.

Ringle, C.M., Wende, S., and Will, A. (2005), SmartPLS, release 2.0 (beta), Hamburg, Germany: SmartPLS. http://www.smartpls.de.

Skinner, C. (2012) “Weighting in the regression analysis of survey data with a

cross-national application� Canadian Journal of Statistics, manuscript.

Tenenhaus, M., Vinzi, V.E., Chatelin, Y.M., and Lauro, C. (2005), “PLS path modeling�, Computational Statistics & Data Analysis, (48:1), pp. 159-205.

Thomson, S.K. (2012), Sampling, John Wiley & Sons, Inc. Hoboken, New Jersey.

Published
2016-06-21
How to Cite
Serrato González, H., Méndez RamírezI., & Lobato Calleros, O. (2016). The sampling design effect on partial least squares algorithm / El efecto de diseño de muestreo en el algoritmo de mínimos cuadrados parciales. RECI Revista Iberoamericana De Las Ciencias Computacionales E Informática, 5(9), 84 - 98. Retrieved from https://mail.reci.org.mx/index.php/reci/article/view/44
Section
Scientific Articles